فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها



گروه تخصصی











متن کامل


نویسندگان: 

VASOU JOUYBARI M. | Ataie E. | Bastam M.

اطلاعات دوره: 
  • سال: 

    1401
  • دوره: 

    52
  • شماره: 

    3
  • صفحات: 

    195-204
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    249
  • دانلود: 

    83
چکیده: 

Distributed Denial of Service (DDoS) attacks are among the primary concerns in internet security today. Machine learning can be exploited to detect such attacks. In this paper, a multi-layer perceptron model is proposed and implemented using deep machine learning to distinguish between malicious and normal traffic based on their behavioral patterns. The proposed model is trained and tested using the CICDDoS2019 dataset. To remove irrelevant and redundant data from the dataset and increase learning accuracy, feature selection is used to select and extract the most effective features that allow us to detect these attacks. Moreover, we use the grid search algorithm to acquire optimum values of the model’s hyperparameters among the parameters’ space. In addition, the sensitivity of accuracy of the model to variations of an input parameter is analyzed. Finally, the effectiveness of the presented model is validated in comparison with some state-of-the-art works.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 249

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 83 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

فیاضی حسین | شکفته یاسر

اطلاعات دوره: 
  • سال: 

    1403
  • دوره: 

    13
  • شماره: 

    25
  • صفحات: 

    93-125
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    19
  • دانلود: 

    0
چکیده: 

In traditional speech processing, feature extraction and classification were conducted as separate steps. The advent of deep neural networks has enabled methods that simultaneously model the relationship between acoustic and phonetic characteristics of speech while classifying it directly from the raw waveform. The first convolutional layer in these networks acts as a filter bank. To enhance interpretability and reduce the number of parameters, researchers have explored the use of parametric filters, with the SincNet architecture being a notable advancement. In SincNet's initial convolutional layer, rectangular bandpass filters are learned instead of fully trainable filters. This approach allows for modeling with fewer parameters, thereby improving the network's convergence speed and accuracy. Analyzing the learned filter bank also provides valuable insights into the model's performance. The reduction in parameters, along with increased accuracy and interpretability, has led to the adoption of various parametric filters and deep architectures across diverse speech processing applications. This paper introduces different types of parametric filters and discusses their integration into various deep architectures. Additionally, it examines the specific applications in speech processing where these filters have proven effective.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 19

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

درویش عباس | شامخی سینا

اطلاعات دوره: 
  • سال: 

    1401
  • دوره: 

    52
  • شماره: 

    2
  • صفحات: 

    137-146
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    132
  • دانلود: 

    21
چکیده: 

Identification of the exact location of an exon in a DNA sequence is an important research area of bioinformatics. The main issues of the previous signal processing techniques are accuracy and robustness for the exact locating of exons. To address the mentioned issues, in this study, a method has been proposed based on deep learning. The proposed method includes a new preprocessing, a new mapping method, and a multi-scale modified and hybrid deep neural network. The proposed preprocessing method enriches the network to accept and encode genes at any length in a new mapping method. The proposed multi-scale deep neural network uses a combination of an embedding layer, a modified CNN, and an LSTM network. In this study, HMR195, BG570, and F56F11.4 datasets have been used to compare this work with previous studies. The accuracies of the proposed method have been 0.982, 0.966, and 0.965 on HMR195, BG570, and F56F11.4 databases, respectively. The results reveal the superiority and effectiveness of the proposed hybrid multi-scale CNN-LSTM network.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 132

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 21 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    1403
  • دوره: 

    14
  • شماره: 

    3
  • صفحات: 

    482-502
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    33
  • دانلود: 

    0
چکیده: 

مقدمه: عملکردهای شناختی نقش حیاتی در عملکرد بسیاری از وظایف بازی می کنند؛ بنابراین اختلال موقت در عملکرد شناختی و ذهنی می تواند منجر به عواقب جدی گردد، به ویژه هنگامی که پاسخ دقیق و فوری نیاز است. یکی از مؤثرترین عوامل برون زاد تأثیرگذار بر مکانیسم پردازشی مغز، توجه و زمان واکنش صدا است. بنابراین، این مطالعه طراحی گردید تا توجه پایدار متمرکز کارگران صنایع فولاد مواجهه یافته با ترازهای فشار صوت مختلف را بسنجد که درنتیجه راندمان و بهره وری کار افزایش خواهد یافت. روش کار: مطالعه در 4 مرحله کلی انجام شد که به ترتیب عبارتند از 1- انتخاب متغیرهای پیش بین جهت (سن، سابقه کار، ترازهای مختلف فشار صوت) 2- انجام آزمون عملکرد پیوسته1  (CPT) 3- انجام آزمون عملکرد شناختی N- BACK 4- مدل سازی تغییرات عملکرد شناختی بر اساس هر دو روش و تعیین نرخ خطا و صحت هر مدل.   یافته ها: نتایج آزمون عملکرد پیوسته نشان داد که خطای حذف، خطای ارتکابی و زمان پاسخگویی هر سه گروه تحت تأثیر زمان شیفت قرار می گیرند، هر سه مولفه به طور معنی داری در انتهای شیفت افزایش یافتند، به عبارتی عملکرد شناختی افراد کاهش یافت. همچنین تاثیر بالای صدا در مدلسازی های آزمون های CPT و N- Back بیانگر کاهش تمرکز و حواس پرتی کارگران ناشی از آن است. نتیجه گیری: نتایج این پژوهش نشان داد که با توجه به وزن بالای به دست آمده از صدا در مدلسازی های آزمون ها، در سه زمان ابتدا، وسط و انتهای شیفت بر مولفه های عملکرد پیوسته (CPT) و عملکرد حافظه کاری (n-back) از جمله زمان پاسخگویی و زمان واکنش کارگران اثر می گذارد و در طول شیفت میزان خطای کارگران افزایش و دقت آنها کاهش می یابد.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 33

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
عنوان: 
اطلاعات دوره: 
  • سال: 

    0
  • دوره: 

    3
  • شماره: 

    (ویژه نامه 10)
  • صفحات: 

    57-58
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    694
  • دانلود: 

    0
چکیده: 

مقدمه: نظر به اینکه سیستم آموزشی فعلی جهت دانشجویان گروه پزشکی به نحوی است که دانشجویان بیشتر زمان آموزش خود را در چارچوب برنامه های رسمی محدود به شرایط تصنعی و کلاسیک طی می کنند، در نتیجه میزان رضایت از کیفیت آموزش به روش موجود و کاربرد آموخته ها در شرایط واقعی نیاز به بررسی و حتی تغییر در رویکرد حاضر دارد.مرور مطالعات: با مطالعه تاریخچه خدمات و آموزش جامعه نگر و جامعه محور در می یابیم که حدود یک قرن پیش به صورت Service learning ارایه خدمات و آموزش به فراگیران همزمان در بستر جامعه انجام می پذیرفت. از اوایل 1900 تاکنون، آموزش دهندگان متوجه اهمیت ارتباط خدمات با اهداف آموزش شده اند و درطی قرن از 1960 تا 1970 در نتیجه S.L گذشته این مفهوم در آموزش جایگاه خود را حفظ کرده است. اغلب برنامه های فعالیت دانشجویان در جامعه در راستای اهداف آموزش توسعه یافت. این S.L اساس اعتقاد و مشابه نگرش ساختار گراهاست که معتقدند تولید و ساخت دانش در افراد از دانش و تجربیات پایه و مقدماتی شروع می شود بطرف فرایند یادگیری، تفسیر و بحث پیرامون اطلاعات جدید در زمینه اجتماع و محیط فردی پیش می رود. در حقیقت مفهوم یادگیری دو طرفه اساس و وجه تمایز تجربه ناشی از آموزش به روش دانشجویان به اهداف آموزشی دروس خود با مشارکت در برنامه های ارایه خدمت در شرایط واقعی دست می یابند و جامعه نیز مستقیما از آن بهره مند می شود. در این روش هم فراگیر و هم جامعه بهره مند می شوند. و فراگیران فعالانه به تولید محصول و خدمت مرتبط با اهداف آموزش می پردازند. با توسعه نگرشها، باورها و رفتارها در ارتباط با جامعه، شهروندانی مطلع و نیروی کار تولیدی تربیت می کنند. در این روش اساس کار دریافت باز خورد از جامعه و مدرسان است که به فراگیران فرصت می دهد دانش جدید خود را با دیگران مطرح کند و آموخته های خود را برای دیگران معنی دار کنند.بحث: در آموزش سنتی مردم بر خدماتی که دریافت میکنند، هیچ گونه کنترلی ندارند، فراگیران نیز قدرت مداخله و کاربرد آموخته های خود را ندارند ولی در این آموزش، تمام ابعاد نیازهای مردم دیده می شود و فراگیران با مشارکت مردم روی نیازها کار می کنند، مردم بر ارایه خدمات نظارت دراند. انریش می گوید: یادگیری فراگیران از طریق خواندن کتابهای قطور در اطاقهای در بسته ایجاد نمی شود، بلکه باید درهای پنجره ها را باز کرد و به دنبال تجربه بود. در نهایت به کمک SL فرصتی برای آزمون مسوولیت پذیری، تبدیل شدن به یک شهروند خوب را برای فراگیران در حین دستیابی به اهداف آموزش و ارایه خدمت به مردم ایجاد نماییم.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 694

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

نشریه: 

ELECTRONIC MARKETS

اطلاعات دوره: 
  • سال: 

    2021
  • دوره: 

    31
  • شماره: 

    3
  • صفحات: 

    685-695
تعامل: 
  • استنادات: 

    2
  • بازدید: 

    67
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 67

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 2 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسندگان: 

اطلاعات دوره: 
  • سال: 

    2020
  • دوره: 

    4
  • شماره: 

    1
  • صفحات: 

    47-56
تعامل: 
  • استنادات: 

    789
  • بازدید: 

    73
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 73

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 789 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2020
  • دوره: 

    14
  • شماره: 

    4
  • صفحات: 

    39-55
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    244
  • دانلود: 

    0
چکیده: 

Emotion Speech Recognition (ESR) is recognizing the formation and change of speaker’ s emotional state from his/her speech signal. The main purpose of this field is to produce a convenient system that is able to effortlessly communicate and interact with humans. The reliability of the current speech emotion recognition systems is far from being achieved. However, this is a challenging task due to the gap between acoustic features and human emotions, which relies strongly on the discriminative acoustic features extracted for a given recognition task. deep learning techniques have been recently proposed as an alternative to traditional techniques in ESR. In this paper, an overview of deep learning techniques that could be used in Emotional Speech recognition is presented. Different extracted features like MFCC as well as feature classifications methods including HMM, GMM, LTSTM and ANN have been discussed. In addition, the review covers databases used, emotions extracted, and contributions made toward ESR.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 244

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2023
  • دوره: 

    8
  • شماره: 

    3
  • صفحات: 

    951-963
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    29
  • دانلود: 

    0
چکیده: 

Due to the rapid advancements in computer technology, researchers are attracted to solving challenging problems in many different fields. The price of rainbow options is an interesting problem in financial fields and risk management. When there is no closed-form solution to some options, numerical methods must be used. Choosing a suitable numerical method involves the most appropriate combination of criteria for speed, accuracy, simplicity and generality. Monte Carlo simulation methods and traditional numerical methods have expensive repetitive computations and unrealistic assumptions on the model. deep learning provides an effective and efficient method for options pricing. In this paper, the closed-form formula or Monte-Carlo simulation are used to generate data in European and Asian rainbow option prices for the deep learning model. The results confirm that the deep learning model can price the rainbow options more accurately with less computation time than Monte-Carlo simulation.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 29

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1398
  • دوره: 

    6
  • شماره: 

    1
  • صفحات: 

    31-46
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    692
  • دانلود: 

    520
چکیده: 

در این مقاله، روشی بر اساس یادگیری ژرف برای برجسته کردن شناسه ها و خواندن پلاک خودروهای ایرانی ارائه شده است. پژوهش حاضر برای ارتقای تصویر و برجسته کردن تصویر پلاک بجای استفاده از روش های متداول ارتقای تصویر از شبکه های عصبی همگشتی با ساختار رمزگذار-رمزگشا استفاده می کند. شبکه پیشنهاد شده می تواند با یادگیری تصاویر پلاک خودرو در شرایط متنوع، شناسه های پلاک خودرو را برجسته نماید. پس از آن، شناسه های پلاک از روی تصویر دودویی شده با استفاده از شبکه های عصبی بازگشتی و بدون نیاز به جداسازی شناسه ها، خوانده می شوند. این کار می تواند خطای ناشی از ناحیه بندی شناسه ها را تا حد زیادی کاهش دهد. روش پیشنهادی برای بازشناسی پلاک خودرو در یک پایگاه داده با 4000 تصویر آزمون به نرخ بازشناسی 94. 19 درصد دقت نهایی رسیده است که این دقت در مقایسه با سایر روش ها قابل قبول می باشد.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 692

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 520 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button